APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES.
نویسندگان
چکیده
In this paper, we study the approximation and estimation of s-concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s-concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [Ann. Statist.38 (2010) 2998-3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q: if Qn → Q in the Wasserstein metric, then the projected densities converge in weighted L1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s-concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s-concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s-concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s-concave.
منابع مشابه
Strong Oracle Optimality of Folded Concave Penalized Estimation By
Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed...
متن کاملStrong Oracle Optimality of Folded Concave Penalized Estimation.
Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed...
متن کاملDiscriminative Densities from Maximum Contrast Estimation
We propose a framework for classifier design based on discriminative densities for representation of the differences of the class-conditional distributions in a way that is optimal for classification. The densities are selected from a parametrized set by constrained maximization of some objective function which measures the average (bounded) difference, i.e. the contrast between discriminative ...
متن کاملLog-concavity Results on Gaussian Process Methods for Supervised and Unsupervised Learning
Log-concavity is an important property in the context of optimization, Laplace approximation, and sampling; Bayesian methods based on Gaussian process priors have become quite popular recently for classification, regression, density estimation, and point process intensity estimation. Here we prove that the predictive densities corresponding to each of these applications are log-concave, given a...
متن کاملA General Framework for Component Estimation
Component estimation arises in Independent Component Analysis (ICA), Blind Source Separation (BSS), wavelet analysis and signal denoising [1], image reconstruction [2, 3], Factor Analysis [4], and sparse coding [5, 6]. In theoretical and algorithmic developments, an important distinction is commonly made between suband super-gaussian densities, super-gaussian densities being characterized as ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of statistics
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2016